博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Hadoop源代码分析(*IDs类和*Context类)
阅读量:5900 次
发布时间:2019-06-19

本文共 2222 字,大约阅读时间需要 7 分钟。

  hot3.png

我们开始来分析Hadoop MapReduce的内部的运行机制。用户向Hadoop提交Job(作业),作业在JobTracker对象的控制下执行。Job被分解成为Task(任务),分发到集群中,在TaskTracker的控制下运行。Task包括MapTask和ReduceTask,是MapReduce的Map操作和Reduce操作执行的地方。这中任务分布的方法比较类似于HDFS中NameNode和DataNode的分工,NameNode对应的是JobTracker,DataNode对应的是TaskTracker。JobTracker,TaskTracker和MapReduce的客户端通过RPC通信,具体可以参考HDFS部分的分析。
我们先来分析一些辅助类,首先是和ID有关的类,ID的继承树如下:
26110212_BFFR.jpg 
这张图可以看出现在Hadoop的org.apache.hadoop.mapred向org.apache.hadoop.mapreduce迁移带来的一些问题,其中灰色是标注为@Deprecated的。ID携带一个整型,实现了WritableComparable接口,这表明它可以比较,而且可以被Hadoop的io机制串行化/解串行化(必须实现compareTo/readFields/write方法)。JobID是系统分配给作业的唯一标识符,它的toString结果是job_<jobtrackerID>_<jobNumber>。例子:job_200707121733_0003表明这是jobtracker200707121733(利用jobtracker的开始时间作为ID)的第3号作业。
作业分成任务执行,任务号TaskID包含了它所属的作业ID,同时也有任务ID,同时还保持了这是否是一个Map任务(成员变量isMap)。任务号的字符串表示为task_<jobtrackerID>_<jobNumber>_[m|r]_<taskNumber>,如task_200707121733_0003_m_000005表示作业200707121733_0003的000005号任务,改任务是一个Map任务。
一个任务有可能有多个执行(错误恢复/消除Stragglers等),所以必须区分任务的多个执行,这是通过类TaskAttemptID来完成,它在任务号的基础上添加了尝试号。一个任务尝试号的例子是attempt_200707121733_0003_m_000005_0,它是任务task_200707121733_0003_m_000005的第0号尝试。
JVMId用于管理任务执行过程中的Java虚拟机,我们后面再讨论。
为了使Job和Task工作,Hadoop提供了一系列的上下文,这些上下文保存了Job和Task工作的信息。
26110213_zu4C.jpg 
处于继承树的最上方是org.apache.hadoop.mapreduce.JobContext,前面我们已经介绍过了,它提供了Job的一些只读属性,两个成员变量,一个保存了JobID,另一个类型为JobConf,JobContext中除了JobID外,其它的信息都保持在JobConf中。它定义了如下配置项:

l          mapreduce.inputformat.class:InputFormat的实现

l          mapreduce.map.class:Mapper的实现

l          mapreduce.combine.class: Reducer的实现

l          mapreduce.reduce.class:Reducer的实现

l          mapreduce.outputformat.class: OutputFormat的实现

l          mapreduce.partitioner.class: Partitioner的实现

同时,它提供方法,使得通过类名,利用Java反射提供的Class.forName方法,获得类对应的Class。org.apache.hadoop.mapred的JobContext对象比org.apache.hadoop.mapreduce.JobContext多了成员变量progress,用于获取进度信息,它类型为JobConf成员job指向mapreduce.JobContext对应的成员,没有添加任何新功能。
JobConf继承自Configuration,保持了MapReduce执行需要的一些配置信息,它管理着46个配置参数,包括上面mapreduce配置项对应的老版本形式,如mapreduce.map.class 对应mapred.mapper.class。这些配置项我们在使用到它们的时候再介绍。
org.apache.hadoop.mapreduce.JobContext的子类Job前面也已经介绍了,后面在讨论系统的动态行为时,再回来看它。
TaskAttemptContext用于任务的执行,它引入了标识任务执行的TaskAttemptID和任务状态status,并提供新的访问接口。org.apache.hadoop.mapred的TaskAttemptContext继承自mapreduce的对应版本,只是增加了记录进度的progress。

更多精彩内容请关注:

关注超人学院微信二维码:110025_ha1C_2273204.jpg

转载于:https://my.oschina.net/crxy/blog/419993

你可能感兴趣的文章
数据批量导入Oracle数据库
查看>>
调用lumisoft组件发邮件 不需要身份验证 不需要密码
查看>>
DW 正则
查看>>
抓屏原理
查看>>
UNIX网络编程读书笔记:TCP输出、UDP输出和SCTP输出
查看>>
扩展 DbUtility (1)
查看>>
iOS开发UI篇—使用picker View控件完成一个简单的选餐应用
查看>>
Apple Developer Registration and DUNS Number Not Accepted
查看>>
Hadoop学习笔记系列文章导航
查看>>
SpringMVC中ModelAndView addObject()设置的值jsp取不到的问题
查看>>
Prometheus : 入门
查看>>
使用 PowerShell 创建和修改 ExpressRoute 线路
查看>>
PHP如何学习?
查看>>
谈教育与成长
查看>>
jni c++
查看>>
在C#中获取如PHP函数time()一样的时间戳
查看>>
Redis List数据类型
查看>>
大数据项目实践(四)——之Hive配置
查看>>
初学vue2.0-组件-文档理解笔记v1.0
查看>>
NG-ZORRO-MOBILE 0.11.9 发布,基于 Angular 7 的 UI 组件
查看>>